Evolutionary Algorithms for Efficient and Generalizable Tuning of Machine Control

Victor Parque

Hiroshima University

2025

Genetic Network Programming (GNP)

- Evolutionary optimization algorithm
 - Population based
 - Selection, crossover, mutation
- Phenotype is a directed graph
 - GP handles trees.
 - GA handles strings.
- Uses judgement and processing nodes.
 - Effective for decission making.

Shingo Mabu, Kotaro Hirasawa, Jinglu Hu

A Graph-Based Evolutionary Algorithm: Genetic Network Programming (GNP) and Its Extension Using Reinforcement Learning Evolutionary Computation (2007) 15 (3): 369–398, MIT Press.

Control Unit (Genetic Network Programming)

Comparison in the testing period Accumulative wealth

- Outperforms the benchmarks
 - 1.38 times better in return accumulation over the long term.
 - 1.42 times better in return accumulation during the latest financial distress period.

Guided Genetic Relation Algorithm on the Adaptive Asset Allocation Victor Parque, Shingo Mabu and Kotaro Hirasawa SICE Annual Conference, Tokyo, Japan, 2011

How to search for the global optimum?

Enables to build almost anything

products, machines from scratch

Global Optimization

Landscape

Convergence

Minimal Points

Exploration and Exploitation

INSTANCE	EXPLORIT		BENCHMARK	
	Evaluations	Performance	Evaluations	Performance
Synthetic	48±15	2.12E-6±1.41E-6	87±18	1.29E-4±1.71E-4
Multi-dimensional	3E6	$1.62E9 \pm 1.5E8$	3E6	$1.15E11 \pm 5.12E11$
Vehicle Powertrain	386±71	(5.18, 0.58, 0.24, 0.27)	1020 ± 192	(5.59, 2.14, 0.25, 0.24)

Victor Parque, Masakazu Kobayashi and Masatake Higashi. Explorit for Global Optimization 5th NIPS Workshop on Optimization for Machine Learning, Lake Tahoe, Sierra Nevada, US, 2012

Case: Vehicle Powertrains

Simulator: Advisor (based on real world tests)

Goal: Maximize mileage, and minimize emissions

Victor Parque, Tomoyuki Miyashita: Learning the Optimal Product Design Through History. ICONIP (1) 2015: 382-389

Neural Computing with Concurrent Synchrony

Robotic Hand

Object to Grasp

Victor Parque, Masakazu Kobayashi, Masatake Higashi: Neural Computing with Concurrent Synchrony. ICONIP (1) 2014: 304-311

Grasping Results

A Study of Fairness Functionals for Smooth Path Planning in Mobile Robots

Victor Parque

2021

How to compute smooth curves effectively?

e.g. safe path planning in robots

Dynamic Models

Unrealistic (noise)

Data-driven Models

Curvature

$$\label{eq:ru} \pmb{r}(u) = \sum_{i=0}^n B_i^n(u) \pmb{p}_i, \quad u \in [0,1]$$
 Bézier curve

Curvature Profile

Curvature Profile Radius of curvature

Computing Smooth Curves

(a) Curvature Profile

(b) Vector \boldsymbol{a}_j

Smoothness: Fairness Functionals

Computing Smooth Curves

The functional $h(\kappa) = \kappa''$ **is robust**

(a) κ

(b) κ'

Computing Smooth Curves

22

Examples in Path Planning

(a) Single Curves

(b) Compounded curves

How to compute smooth curves effectively?

Lesson 2. The functional $h(\kappa) = \kappa''$ is robust...

Lesson 1. The fairness functional is key!

 $\min_{p_i} F = E + \lambda H$

A Study of Fairness Functionals for Smooth Path Planning in Mobile Robots

Victor Parque Waseda University

Optimal Design of Cable-Driven Parallel Robots by Particle Schemes

Victor Parque, Tomoyuki Miyashita

Cable-driven Parallel Robot

Cable-driven Parallel Robot

 $0 \leq f_{\min} \leq f \leq f_{\max}$

Tension Distribution Problem

Cable Configuration Problem

Cable Configuration Problem: Challenges

Geometry Methods

Specific to the robot architecture

Optimization Methods

Applicable to various architectures

Cable Configuration Problem: 8 cables, 6D0F

Trajectory tasks

Pott et al, IPAnema: A family of Cable-Driven Parallel Robots for Industrial Applications, 2013

Cable Configuration Problem

Non-linear Problem: We compare several Particle Swarm Heuristics

Cable Configuration Problem: Particle Schemes

- Particle Swarm Optimization (PSO)
- Particle Swarm with **Speciation** (PSOSP)
- Differential Particle Scheme (DPS)
- Particle Swarm with Fitness Euclidean Ratio(PSOFER)
- Particle Swarm Optimization with Global Explorative Strategy(PSOG)

1000 function evaluations, 30 independent runs

Mean Convergence

Cable Configuration Problem – Best Configurations (out of 30 runs)

Force Distribution Problem – Solutions over 30 runs

Solutions to the tension problem are not always smooth

Statistical Comparison – Solutions over 30 runs

PSOFER (niching) and DPS (stagnation avoidance) outperform other optimization algorithms

Conclusion Final Notes

Future Work

We tackle the configuration problem in cable-driven parallel robots.

Cable configuration problems are solvable quite efficiently (10³ evaluations), but force solutions are not always smooth.

Strategies for niching and stagnation avoidance outperform other heuristics.

Applications: Robot Leg (Cable-driven), Arm Exoskeleton, Manipulation

A Hybrid Evolutionary Approach for Multi Robot Coordinated Planning at Intersections

Background

Vehicles at Intersections

Desirable Trajectories, and Kinematic Constraints

Background

Robots at intersections

Ideal trajectories Origin - Destination

Coordinated trajectory planning

Lattice Configuration

Origin - Destination

Triangulation

Lattice Configuration

Directed Graph $G_i = (V_i, E_i)$

Origin - Destination

Triangulation

Lattice Configuration - Example

Origin - Destination

Triangulation

Multi-Robot Coordinated Path Planning

Lattice-based Roadmap

Gradient-Free Optimization

RADES: Rank-Based Differential Evolution with Successful Archive

Solution vector $x_{i,t+1} = \begin{cases} u_{i,t}, & \text{for } f(u_{i,t}) < f(x_{i,t}) \\ x_{i,t}, & \text{otherwise} \end{cases}$ $oldsymbol{u}_{i,t} = oldsymbol{\dot{x}}_{i,t}^r + oldsymbol{b}_{i,t}^r \circ (oldsymbol{v}_{i,t} - oldsymbol{x}_{i,t}^r)$ Crossover vector (binary) $oldsymbol{x}_{i,t}^r = egin{cases} \mathbf{x}_{i,t}, & q_i' \leq Q \ \mathcal{A}_{i,t}, & ext{otherwise} & ext{Archive} \end{cases}$ $\boldsymbol{v}_{i,t} = \begin{cases} \mathbf{scalar} \\ \boldsymbol{x}_{\text{best}} + F(\boldsymbol{x}_{r_1} - \boldsymbol{x}_{r_2}), & q_i \leq Q \\ \boldsymbol{\mathcal{A}}_{\text{best}} + F(\boldsymbol{\mathcal{A}}_{r_1} - \boldsymbol{\mathcal{A}}_{r_2}), & \text{otherwise} \end{cases}$ **Whitley Distribution** $r_{1,2} = \left\lfloor \frac{|\mathcal{P}|}{2\beta - 1} \left(\beta - \sqrt{\beta^2 - 4(\beta - 1)r}\right) \right\rfloor$ $Q = 128 \quad F = 0.7 \quad \beta = 2$

Algorithm 1: RADES 1 $FEs = 0, t = 0, q_i = 0;$ 2 Generate a set of N individuals randomly as initial population set \mathcal{P} ; 3 Initialize the archive \mathcal{A} from the population set \mathcal{P} ; 4 Initialize the F and CR: 5 FEs = FEs + N; 6 while $FEs \leq MaxFEs$ do t = t + 1;7 Find out the best individual x_{best} and $\mathcal{A}_{\text{best}}$ from 8 the population and the archive \mathcal{A} respectively; for i = 1 to NP do 9 Generate r_1 and r_2 using (10); 10 Generate the mutant vector $v_{i,t}$ 11 Generate the trial vector $u_{i,t}$ 12 if $f(\boldsymbol{u}_{i,t}) < f(\boldsymbol{x}_{i,t})$ then 13 $x_{i,t+1} = u_{i,t};$ 14 $oldsymbol{u}_{i,t}
ightarrow \mathcal{A};$ 15 Delete an element from \mathcal{A} if $|\mathcal{A}| > |\mathcal{P}|$; 16 $q_i = 0$: 17 else 18 $\boldsymbol{x}_{i.t+1} = \boldsymbol{x}_{i,t};$ 19 $q_i = q_i + 1;$ 20 end 21 FEs = FEs + 1;22 end 23 24 end

46

Computational Experiments

10 scenarios, diverse origin-destination and configurations

Computational Experiments

Instance 6

Instance 7

Instance 9

It is possible to compute feasible collision-free multi-robot trajectories

Statistical Comparisons

RADES outperforms or performs equally to other baselines

Optimization Convergence

Example

Destination

Conclusion Final Notes

Results

- **<u>k</u>** Coordinated trajectory planning for multi-robots
- **& Using lattice roadmaps and gradient-free optimization**
- **Efficient convergence** by proposed **RADES** to composite lattice paths

PID Tuning using Differential Evolution with Success-based Particle Adaptations

Victor Parque¹, Alaa Khalifa²

¹Hiroshima University, ²Menoufia University

PID Control Tracking desired targets

e

PID

Control

Desired

 y_s

$$e(t) = y_s(t) - y(t) \qquad \mathbf{x} = [k_p \ k_i \ k_d]$$

 \mathcal{U}

Plant

(Model)

Observed

y

$$IAE(\mathbf{x}) = \int_0^{T_s} |e(t)| dt \qquad ITAE(\mathbf{x}) = \int_0^{T_s} t |e(t)| dt \qquad ITSE(\mathbf{x}) = \int_0^{T_s} t e(t)^2 dt \qquad ISE(\mathbf{x}) = \int_0^{T_s} e(t)^2 dt$$

PID Control Tracking desired targets Dynamic Models

Data-driven Models

How to design algorithms for generalizable PID tunning

16

PID Control

Towards generalizable frameworks

PID Control DEPA: Differential Evolution with Particle Adaptations

$$\mathbf{x}_{i,g+1} = \begin{cases} \mathbf{u}_{i,g}, \text{ if } f(\mathbf{u}_{i,g}) < f(\mathbf{x}_{i,g}) \\ \mathbf{x}_{i,g}, \text{ otherwise} \end{cases}$$

$$\boldsymbol{u}_{i,g} = \boldsymbol{x}_{i,g}^r + \boldsymbol{v}_{i,g}^*$$

$$\boldsymbol{v}_{i,g}^* = \boldsymbol{\omega} \boldsymbol{v}_{i,g} + F_i(\boldsymbol{x}_{\text{pbest},g} - \boldsymbol{x}_{i,g}^r)r_1 + G_i(\boldsymbol{x}_{\text{gbest},g} - \boldsymbol{x}_{i,g}^r)r_2$$

$$\boldsymbol{v}_{i,g+1} = \begin{cases} \boldsymbol{v}_{i,g}^*, \text{ if } f(\boldsymbol{u}_{i,g}) < f(\boldsymbol{x}_{i,g}) \\ \boldsymbol{v}_{i,g}, \text{ otherwise} \end{cases}$$
$$\boldsymbol{x}_{i,g}^r \in_R \begin{cases} \mathcal{P}, \text{ if } q_i < Q \\ \mathcal{A}, \text{ otherwise} \end{cases}$$
$$\mathcal{A}_g = \begin{cases} \mathcal{P}, \text{ if } g = 0 \\ \mathcal{A}_g \cup \{\boldsymbol{u}_{i,g}\}, \text{ if } g > 0 \text{ and } f(\boldsymbol{u}_{i,g}) < f(\boldsymbol{x}_{i,g}) \end{cases}$$

Algorithm 1: DEPA 1 *FEs* = 0, g = 0, $q_i = 0$, k = 0; 2 Generate a set of N individuals randomly as initial population set \mathcal{P} ; 3 Initialize the archive \mathcal{A} from the population set \mathcal{P} ; 4 Initialize the tuples \mathcal{M}_{E}^{k} and \mathcal{M}_{C}^{k} ; 5 FEs = FEs + N; 6 while $FEs \leq MaxFEs$ do g = g + 1;7 $S_F = \{\}, S_G = \{\};$ 8 for i = 1 to N do 9 Sample $a_i \sim U[1,h], b_i \sim U[1,h];$ 10 Generate F_i and G_i using (14)-(15); 11 end 12 Find out the best individual $\boldsymbol{x}_{\text{gbest},g}$ overall \mathcal{P} ; 13 for i = 1 to N do 14 Update the *i*-th best individual $\mathbf{x}_{pbest,g}$; 15 Generate the trial vector $\boldsymbol{u}_{i,g}$ using (9)-(12); 16 if $f(\boldsymbol{u}_{i,g}) < f(\boldsymbol{x}_{i,g})$ then 17 18 $x_{i,g+1} = u_{i,g}, v_{i,g+1} = v_{i,g}^*;$ $\boldsymbol{u}_{i,g} \to \mathcal{A};$ 19 Delete an element from \mathcal{A} if $|\mathcal{A}| > \lambda |\mathcal{P}|$; 20 $F_i \rightarrow S_F, G_i \rightarrow S_G;$ 21 $q_i = 0;$ 22 23 else 24 $x_{i,g+1} = x_{i,g};$ 25 $v_{i,g+1} = v_{i,g};$ $q_i = q_i + 1;$ 26 27 end FEs = FEs + 1; 28 end 29 if $S_F \neq \{\} \land S_G \neq \{\}$ then 30 k = k + 1;31 Update \mathcal{M}_{F}^{k} and \mathcal{M}_{G}^{k} using (16) and (17); 32 Set k = 1 if k > h; 33 end 34 35 end

PID Control DEPA: Differential Evolution with Particle Adaptations

PID Control Inverted Pendulum

Pendulum angle

ELMA: Extreme Learning Machine with Learnable Activation Functions

ELMA: Extreme Learning Machine with Learnable Activation Functions

ELMA: Extreme Learning Machine with Learnable Activation Functions

Performance of ELMA when activation functions are learned in M5: Magnetic Levitation Control.

62

ELMA: Extreme Learning Machine with Learnable Activation Functions

Thank you

Victor Parque

Associate Professor

Informatics and Data Science Program

Graduate School of Advanced Science and Engineering

Hiroshima University, Japan

parque@hiroshima-u.ac.jp